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Akstrmet--Ir~ this paper we study the longitudinal heat conduction effects on the classical problem of forced 
laminar convection from a fiat plate with an uniform temperature on the opposite surface. We found that 
small but noticeable differences when including the longitudinal heat conduction through the wall for the 
thermally thin wail regime as compared with the thermally thick wall regime solution. © 1997 Elsevier 

Science Ltd. 

1. INTRODUCTION 

The study of conjrLgate heat transfer between forced 
convection flows and conduction in walls is important 
due to the existence of  coupled effects in practical 
heat transfer processes. Several works appear in the 
literature concerning the conjugate heat transfer pro- 
cess from a heated or cooled wall with finite thickness 
to a forced convective flow, where the temperature 
of the other surface is maintained at a constant and 
uniform temperature. Luikov [1] and Payvar [2] ana- 
lyzed this conjugate problem. Luikov [1] developed 
two approximate solutions, one based on a differential 
analysis with low Prandtl number and the second 
based on a integral analysis with assumed polynomial 
forms for the velocity and temperature profiles. He 
concluded that for Brun numbers larger than 0.1, the 
thermal resistance of the wall can be neglected. The 
Brun number can be defined as the ratio ~/e 2, where ct 
is the nondimensional longitudinal heat transfer par- 
ameter and e is the aspect ratio of the plate (thickness 
to length). Payvar [2] used the Lighthill approxi- 
mation [3] for large Prandtl numbers in order to 
obtain an integral equation which has been solved 
numerically. He obtained asymptotic solutions for 
large and small Br~Ln numbers. This problem has been 
revised recently by Pozzi and Lupo [4] and Pop and 
Ingham [5]. In all the cited works only the transversal 
heat conduction through the plate has been considered 
and, therefore, neglected the longitudinal contri- 
bution. 

The objective of the present work is to obtain ana- 
lytically the overall heat transfer rates and the tem- 
perature profiles in the plate for the above-mentioned 
problem, with inclusion of the longitudinal heat con- 
duction in the plate. The set of the governing equa- 
tions are now elliptic and are to be solved using the 
Lighthill asymptotic approximation for large Prandtl 
numbers. The resulting energy equation for the flat 
plate depends fundamentally on two parameters: ct 
and e. These nondimensional parameters are to be 
defined in the following section. We use asymptotic 
techniques exploring analytically the limiting case of 
large values of ~, with e << 1 to be compared with the 
numerical solution. 

2. ANALYSIS 

A thin flat plate of length L and thickness h is placed 
parallel to a forced flow of a incompressible fluid 
with free-stream velocity U~ and temperature T~. The 
other surface of the plate is maintained at an uniform 
temperature Tw. The upper left corner of the plate 
coincides with the origin of a Cartesian coordinate 
system whose y axis points upward in the direction 
normal to the plate and its x axis points to the right 
in the plate's longitudinal direction. 

The nondimensional governing equations are very 
well-known and can be found elsewhere [1, 2, 4, 5]. 
Introducing the following normalized variables 

T -  Tw x y 
0 T ~ - r w  Z = L  z = ~  (1) 
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the nondimensional energy equation for the plate is 
given by the Laplace equation 

~20 1 c~20 
- -  + - - -  = O. (2)  
OZ 2 e 2 8z 2 

We assume, for simplicity, that both edges (leading 
and trailing edges) are adiabatic, which corresponds 
to the following boundary conditions 

00 
- - = 0  a t ) ~ = 0  and Z = I .  (3) 
0K 

The boundary condition at the upper solid-fluid 
interface is obtained from continuity of the tem- 
perature and the heat flux. Using the asymptotic 
Lighthill approximation [3] valid for large Prandtl 
numbers compared with unity, this boundary con- 
dition can be written as 

~zC30= 0 -- e 2 1 x - - [ 1 - - O l ~ - - f  Ku=d0: 'ql 
,/zL 3o oz "dz J 

(4) 

where 

1 2w h 1 h 

- 0.332 2 L R e l / : p r  l/s and e = ~ (5) 

which represent the most relevant nondimensional 
parameters for this problem. Here, a is a non- 
dimensional parameter which relates the solid longi- 
tudinal heat conduction to the convective heat 
towards the fluid and e represents the aspect ratio of 
the plate assumed in this work to be much lower 
compared with unity. 2~ and 2 represent the thermal 
conductivity of the wall material and the fluid, respec- 
tively. R e  corresponds to the Reynolds number of 
the flow, R e  = U ~ L / v  and Pr  to the Prandtl number, 
Pr  = pve/2,  where v, p and c denote the kinematic 
viscosity, the density and the specific heat of the fluid, 
respectively. The Lighthill approximation gives accu- 
rate results also for values of the Prandtl numbers of 
order unity. The kernel of the integral in equation (4) 
is given by Ref. [3] 

where the subindex u denotes the upper interface and 
l denotes the leading edge. The other boundary con- 
dition is 0 = 0 at z = - 1. The nondimensional global 
heat flux can be defined as 

j 'L (x) dx qw 
1 o 

-  foL o N u  = 0 .332Ret /2pr l /3  2(T~ - Tw) = ~ d;(. 

(7) 

For large values of e, that is c~ >> 1, the heat con- 
ducted by the plate is very large in all directions. Thus, 
no temperature gradients of importance arise in the 
wall. In this limit the nondimensional transversal vari- 

ations of the wall temperature are very small of order 
ez/cc This limit is called the thermally thin wall regime. 
On the other hand, for ~ << 1 (thermally thick wall 
regime), the longitudinal heat conduction through the 
solid can be neglected. In all the approaches published 
up to date on this problem, the longitudinal heat con- 
duction through the wall has been neglected. The main 
objective of this work is to evaluate the longitudinal 
heat conduction through the solid in the thermally 
thin wall regime (a/e 2 >> 1). 

For  the thermally thin wall regime, the longitudinal 
heat conduction can be important and must be 
retained in the analysis. However, in this problem the 
longitudinal temperature gradients cannot be large 
because of the boundary condition at the lower face 
of the plate. This is the reason why the thermally thick 
wall approximation gives very good results for the 
thermally thin wall regime. However, there are notice- 
able differences to be cleared in this work. 

In the thermally thin wall regime the non- 
dimensional temperature change in the transversal 
direction in the wall is very small. For  this reason, 
also, the longitudinal change is of the same order of 
magnitude because the fixed boundary condition at 
the lower surface of the plate. In the asymptotic limit 
c~ --, oo, which is a regular limit, the nondimensional 
temperature at the wall is exactly zero everywhere in 
the plate. The problem then reduces to the case of the 
heat transfer process from an isothermal wall. In this 
limit, putting 0tu = 0, = 0 in equation (4) and inte- 
grating along the longitudinal direction in the wall we 
obtain l i m ~ N u  = 2. This is the same result if using 
the thermally thick wall approximation (no longi- 
tudinal heat conduction). The longitudinal heat con- 
duction is not relevant because there is not any tem- 
perature gradient in the wall. However, for finite 
values of ~, both solutions give different results. With- 
out inclusion of the longitudinal heat conduction 
through the solid, equation (4) reduces to the fol- 
lowing parameter-free equation 

d0~, d~']  

2 f l  , - K u ~ ; d ¢  (8) 

where ¢ = ~2~/e4 and 01u = 1. This integral equation 
must be solved numerically. The overall reduced Nus- 
selt number for this case is then given by 

t :  f'~:/~' de ('~ dO" , 

(9) 

The asymptotic so lu t ion  of equation (8) for large 
values of ~ is given by 

1 1.061 
0u - -  + , ' " ,  a s ~ o o .  (10)  



Convective heat transfer in laminar flow 3579 

The overall Nusselt number is then described asymp- 
totically by 

--Nu ~ 2 2.837~9/2o 2 - 2 " 8 3 7 ( @ )  9/'° 

for ct --, oo with fixed e. ( l l )  

This solution is surprisingly accurate. However,  for 
the thermally thin wall regime, the behavior close to 
the leading edge is unacceptable. The longitudinal 
heat conduction term must be retained in a layer of  
order e in ~, where the nondimensional temperature 
reach values o f  the order e3/2/~. The reduced inner 
variables in this layer can then be defined by ~ = e( 
and 0u = (e3/2/00¢p. The inner universal problem to be 
solved is 

a2~ -~- ~2~ = 0 (12) 
(~2 OZ 2 

with the following boundary conditions 

c~q~ 
- - = 0  a t ( = 0 ,  and (p--*0 f o r ( - - . o o  (13) 
0( 

a~o 1 
~ = o  a t z = - I  - - = - -  a t z = O .  (14) 

The overall reduced Nusselt in this limit takes the 
form 

Ae 2 
N u  ~ 2 -  - -  (15) 

where 

l '1/~ 1 ('~ d q / .  , 

Here, ~o,i = q~(~ = 0,z = 0) and ~Ou = ~o((,z = 0). 
Using the Fourier  cosine transform technique, the 
solution to equations (12)-(14) is given by 

X/~ff tanh(k)c°s(kOdk 
'p.(O = k3/2 

with q~u~ - 3.0409. (17) 

Fo r  large values of (, the asymptotic solution is given 
by 

1 
t#u(( ) ~ ~ ,  as ( - *  oo. (18) 

The value of  A(e) is a relatively smooth function of  e 
as shown in the following table • 

A ( 0  

0.05 4.23423 
0.1 4.12605 
0.2 4.01173 

3. RESULTS 

Small, but noticeable, discrepancies are observed 
when using the thermally thick wall approximation 
for large values of  g/e:. Figure 1 shows the overall 
reduced Nusselt number as a function of  ct/e:, using 
the numerical solution with the full Laplace equation 
and compared with the solution obtained using the 
thermally thick wall approximation,  equation (9). The 
asymptotic solution for large values of  ct/e 2 given by 
equation (11) is also plotted. We observe in this figure 
that both solutions diverge slightly one from each 
other for values of  ct/e 2 >> 1. At  the right wing of  the 
figure, the overall reduced Nusselt number is slightly 

Thermally thick wall approximation 
+ + + Numerical solution e = 0.1 
× × × Numerical solution e = 0.01 

. . . . . . . .  Asymptotic solution, equation (! 1) 
2.0 x . ' X  - = l - x . . x , .  x~x. / -  
1.5 

12 
1.0 

0.5-- 

0 J I I I l J l l l l l  I I IIIIII1 

1 0  - 2  1 0  -1  I 1 0  1 0  2 1 0  3 

ot/e 2 
Fig. 1. Overall reduced Nusselt number as a function of ct/e ~, 
obtained using the thermally thick wall approximation and 
a numerical code with the full Laplace equation for the wall. 

2 . 0  

1 .9  

1218 

1 .7  

Asymptotic solution, equation (11) 
-o- Asymptotic solution, equation (15) with e = 0.05 
.A. Asymptotic solution, equation (15) with e = 0.1 
.n. Asymptotic solution, equation (15) with ~ = 0.2 

1.~ I I I I I I I I I  I I I i J , t l  
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Fig. 2. Asymptotic solutions for the overall reduced Nusselt 
number as a function of ct/e 2 and different values of e. 
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larger when including the longitudinal heat conduc- 
tion. Figure 2 shows the asymptotic solutions for large 
values of ~/e 2, obtained using the thermally thick wall 
approximation (1 l) and that obtained using the full 
Laplace equation (15), with different values of e. Both 
approximations give an excellent approximation to 
the solution. Including the longitudinal heat con- 
duction through the plate give higher values of the 
overall reduced Nusselt number,  which follows the 
same trend observed in Fig. 1. However, both approxi- 
mations cross to each other at some position in ct/~ 2. 
Of course at this position the asymptotic approxi- 
mations are not more valid and what happens is that 
both asymptotic approximations merge, following the 
thermally thick wall approximation. As the value of 
e decreases, both asymptotic approximations merge 
earlier. It is expected that in the limit of  e ~ 0, both 
asymptotic approximations give the same results. 
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